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 previously uncharacterized interaction between the ULK1 complex 
and the ATG5 complex is required for ULK1 complex–dependent, but 
not ULK1 complex–independent, autophagy processes.

RESULTS
Pre-autophagosomes	accumulate	in	the	absence	of	ATG3
To study the molecular events during formation of the pre-
 autophagosome structures, we separated membrane-bound proteins 
from cytosolic proteins by subcellular fractionation. Cytosolic LC3 
(LC3-I) was separated from membrane-bound LC3 (LC3-II) in wild-
type mouse embryonic fibroblasts (MEFs; Fig. 1a). However, using 
this method, we scarcely detected the accumulation of upstream ATG 
proteins, such as ATG16L1, in the membrane fraction of wild-type 
MEFs even when autophagy was induced by amino acid deprivation  
(Fig. 1b). This suggests that the recruitment of upstream ATG proteins 
to pre-autophagosome structures may occur transiently. Previous studies  
suggest that in the absence of ATG3, pre-autophagosome structures are 
unable to mature into autophagosomes and therefore accumulate in the 
cell, probably leading to stabilization of upstream autophagy events that 
are transient in ATG3-expressing cells13,21. Therefore, we tested the sub-
cellular localization of ATG16L1 in Atg3−/− MEFs. Notably, ATG16L1 
accumulated in the membrane fraction of these cells (Fig. 1b). We 
detected no increase in ATG16L1 recruitment to the membrane frac-
tion after 2 h of amino acid starvation in Atg3−/− cells, in agreement 
with previous studies21. Similarly, in immunofluorescence analyses we 
found that structures containing ATG16L1, which colocalized with endo-
genous ATG5, were detectable even under nutrient-rich conditions in the 
absence of ATG3 (Fig. 1c).

Identification	of	FIP200	as	an	ATG16L1-interacting	partner
Next we sought to identify previously uncharacterized protein-protein 
interactions of membrane-bound ATG proteins in Atg3−/− cells using 
ATG14 and ATG16L1 as baits. For this, we used tandem affinity puri-
fication to purify ATG14 and ATG16L1 complexes followed by SDS-
PAGE analysis and silver staining (Fig. 2a). We observed prominent 
bands in the ATG14 sample that correspond to known ATG14 inter-
acting partners, including Vps34 and p150, confirming that functional 
autophagy complexes can be purified by this method. In the case of 
ATG16L1 purification, we detected a distinct band of a molecular 
weight greater than 170 kDa in addition to the ATG5-12 conjugate, 
the known binding partner of ATG16L1. Mass spectrometric analysis 
revealed the identity of this band as FIP200, an essential component of 
the ULK1 complex. Previously, the ULK1 complex has been proposed 
to be functionally linked to the ATG5 complex, but how these two 
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residues 1–335 deleted) was defective in binding to FIP200. These results 
suggest that the interaction between ATG16L1 and FIP200 is mediated 



nAture structurAl & moleculAr biology	 VOLUME 20 NUMBER 2 FEBRUARY 2013 147

A r t i c l e s

complex–independent manner that correlates with an increase in  
cellular ammonia levels and lack of mTORC1 inhibition27,28. We con-
firmed this using ULK1 and ULK2 double-knockout MEFs, in which 
glucose starvation induced formation of LC3-II that was susceptible to 
lysosomal degradation (Fig. 6a). We also observed that glucose star-
vation did not induce ULK1 dephosphorylation on residues that are 
dephosphorylated during amino acid starvation29 (Fig. 6b). Notably, 
when we reconstituted Atg16l1−/− cells with full-length ATG16L1 or 
ATG16L1∆FBD, we observed comparable conversion of LC3-I to LC3-II  

upon glucose starvation, whereas the absence of ATG16L1 expres-
sion completely abolished LC3 conjugation (Fig. 6c). This indicates 
that ATG16L1∆FBD is fully functional during such ULK1 complex–
independent autophagy. Similarly, we observed comparable forma-
tion of GFP-LC3 punctate structures in cells expressing full-length 
ATG16L1 or ATG16L1∆FBD (Fig. 6d). Overall, these analyses suggest 
that, unlike ULK1 complex–dependent autophagy induced by amino 
acid starvation, ULK1 complex–independent autophagy induced by 
glucose starvation does not require FIP200 binding to ATG16L1.
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DISCUSSION
In this study we offer evidence for a direct interaction between the 
ULK1 complex component FIP200 and the ATG5 complex com-
ponent ATG16L1. The finding that this interaction is specifically 
required for ULK1 complex–dependent autophagy provides mecha-
nistic insights into how the ULK1 complex communicates with other 
ATG complexes such as the ATG5 complex. The ATG5 complex 
(including its component ATG16L1) belongs to the essential core 
autophagy machinery, whereas the ULK1 complex seems to medi-
ate autophagy induced by only certain specific triggers. The LC3 
conjugation reaction is intact in cells with genetic deletion of ULK1 
(refs. 30,31), and LC3-II formation takes place at basal levels in cells 
depleted of ULK1 complex components22,32. Moreover, the ULK1  
complex, but not the ATG5 complex, is dispensable for glucose  
starvation–induced autophagy27.

It would be interesting to consider whether ATG16L1 might be a 
convergence point mediating other upstream autophagy signals, in 
addition to signals through ULK1. It is evident, however, that the FBD 
region of ATG16L1 is not necessarily responsible for all other signals  
because ATG16L1∆FBD is functionally intact during glucose  
starvation–induced autophagy. Another recognizable structure in 
ATG16L1 is the C-terminal WD40 repeats, a versatile protein-protein 
interaction domain that is not present in yeast ATG16. Although not 
required for autophagy triggered by amino acid starvation, it is possi-
ble that this region mediates certain other autophagy signals. If so, then 
the C-terminal region of ATG16L1 enables the mammalian autophagy  
pathway to sense more diverse and complex signals compared to its 
yeast counterpart. However, it is also possible that the WD40 repeats 
in mammalian ATG16L1 are relevant only to non-autophagy pro-
cesses10,33. In light of this, it would be useful to explore the potential 
pathological role of the Crohn’s disease–associated ATG16L1 muta-
tion (T300A), which lies within the WD40 repeats, in both autophagy-
related and non–autophagy-related processes34,35.

A detailed comparison of ATG16L1 with its homolog ATG16L2 
should also shed light on the function of ATG16L1 during autophagy. 
Unlike ATG16L1, ATG16L2 is unable to support autophagy or local-
ize to the phagophore structures despite its ability to bind ATG5, 
self-oligomerize and form a large protein complex with the ATG5-
12 complex26. ATG16L1 proteins from various vertebrate species all 

have highly conserved FBD regions, whereas ATG16L2 lacks this 
domain. Consistent with this, we found ATG16L2 did not interact 
with FIP200. However, whether the lack of FBD renders ATG16L2 
inactive in autophagy is unclear, as ATG16L1 with its FBD deleted can 
still mediate ULK1 complex–independent autophagy. In addition, nei-
ther yeast nor Caenorhabditis elegans ATG16 have this domain (there 
is no true FIP200 homolog in these organisms either). Furthermore, 
previous in vitro biochemical studies suggest that yeast ATG16 is not 
required for the E3-like activity of ATG5-12 during the conjugation 
of ATG8 (the yeast homolog of LC3) to phosphatidylethanolamine36. 
Thus, in mammalian cells, the difference between ATG16L1 and 
ATG16L2 in autophagy does not seem to be due to their differential 
influence on the E3-like enzymatic activity of the ATG5 complex. The 
exact structural and biochemical mechanism that renders ATG16L1 
but not ATG16L2 an essential functional component in autophagy 
has yet to be defined.

In conclusion, this study has uncovered a previously uncharacter-
ized functional interaction between two upstream ATG complexes 
and has demonstrated that ATG16L1 is not only an essential struc-
tural component of the ATG5 complex but also a signaling protein 
that can mediate specific upstream signals during autophagy, such as 
those transduced by the ULK1 complex.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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