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New H3–H4 dimers bind various histone chaperones. Newly syn-
thesized H3–H4 molecules appear to form distinct protein complexes 
shortly following their synthesis in the cytoplasm. Purification of 
human canonical histone H3.1 from HeLa cytosolic extracts, fol-
lowed by separation of the protein complexes by chromatography, 
suggested that new H3.1 associates with the protein chaperone 
Hsc70 before being assembled into a larger complex containing his-
tone chaperone t-NASP, histone H4 and protein chaperone Hsp90 
(ref. 18). H3–H4 then associates with the lysine acetyltransferase 
Hat1–RbAp46, for acetylation, and histone chaperone Asf1 and 
importin-4 before nuclear import18. More recently, it was observed 
that depletion of NASP results in reduced amounts of free histones 
H3–H4 and that NASP protects histones from degradation by  
chaperone-mediated autophagy, through inhibition of Hsp90 and 
Hsc70 activity19. Thus, new H3.1–H4 forms various complexes with 
different histone chaperones to regulate free histone abundance and 
nuclear import, which probably affects the deposition of new H3–H4 
onto replicating DNA.

How are new (H3–H4)2 tetramers formed? Once bound to Asf1, 
new H3–H4 is imported from the cytoplasm to the nucleus. Various 
studies have shown that one molecule of Asf1 binds an H3–H4  
heterodimer to form a heterotrimeric complex14,20, with Asf1 bind-
ing the H3 interface involved in formation of a (H3–H4)2 tetramer21 
(Fig. 2a,b). Similarly, it has been shown that HJURP (Scm3 in yeast), 
the chaperone for the centromeric histone H3 variant CENP-A22–24, 
binds the CENP-A interface involved in tetramer formation25,26 
(Fig. 2c). Thus, Asf1 and HJURP represent a class of H3–H4 chaper-
ones that bind the dimeric form of H3–H4.

One key unresolved question is how (H3–H4)2 tetramers are 
formed from new H3–H4 dimers complexed with Asf1. Evidence 
from various studies supports a model in which H3–H4 of the Asf1–
H3–H4 complex is transferred to other histone chaperones, such as 
CAF-1 and Rtt106, for nucleosome assembly. First, in human cells, 
Asf1 regulates the pool of H3–H4 available to CAF-1 during replica-
tion stress27. In budding yeast, Asf1 is essential for acetylation of H3 
lysine 56 (H3K56ac)15,28, a mark of newly synthesized H3 (ref. 29). 
Importantly, Asf1 and H3K56ac are required for the efficient associa-
tion of H3–H4 with Rtt106 and CAF-1 in vitro and in vivo30. Finally, 
Asf1 directly interacts with the human p60 (yeast Cac2) subunit of 
CAF-1 (refs. 31,32). In vitro, Asf1 binds H3–H4 with similar affinity 
as CAF-1 or Rtt106 binding to H3–H4 (refs. 33–35), which raises the 
question of how H3–H4 can be transferred from Asf1 to other his-
tone chaperones. A recent study indicates that RbAp48, a subunit of 
CAF-1, binds heterodimeric H3–H4 and that Asf1 can associate with 
the RbAp48–H3–H4 complex. Interestingly, the affinity of Asf1 for 
RbAp48–H3–H4 is lower than that for H3–H4 (ref. 36), which sug-
gests that the interaction between Asf1 and H3–H4 is weakened once 
the Asf1–H3–H4 complex associates with other histone chaperones. 
Together, these results suggest that the interaction between Asf1 and 
other histone chaperones may facilitate the transfer of H3–H4 from 
the Asf1–H3–H4 complex to other histone chaperones.

H3K56ac is located far away from the H3 interface involved in 
(H3–H4)2 tetramer formation5, which suggests that Rtt106 and  
CAF-1 adopt a different mode of interaction with histones com-
pared to that of Asf1 (Fig. 2b). Indeed, recent studies indicate that  
(H3–H4)2 tetramers are probably formed on Rtt106 and CAF-1 before 
deposition of H3–H4 molecules at the replication fork. Rtt106 con-
tains a dimerization domain at the Rtt106 N terminus and a double 
pleckstrin homology (PH) domain that is critical for recognition of 
H3K56ac35,37–39 (Fig.  2d). In vitro, both the Rtt106 dimerization 
domain and the tandem PH domains bind H3–H4, with the Rtt106 
dimerization domain binding unacetylated H3–H4 and the tandem 
PH domains recognizing H3K56ac35. In addition, Rtt106 binds a 
(H3–H4)2 tetramer in vitro and in vivo35
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H3.1–H4 does not mix with new H3.1–H4 to form mixed nucleo-
somes during S phase of the cell cycle17.

H3  and  H4  modifications  regulate  replication-coupled  nucleo-
some assembly. Histone proteins are marked, by histone-modifying 
enzymes, with post-translational modifications, such as acetylation, 
methylation, phosphorylation and ubiquitylation. These marks have 
distinct functions and regulate a number of cellular processes42. New 
H3–H4 is modified post-translationally, such that it is distinguishable 
from parental histone H3–H4 (refs. 27,29,43). Recent studies indicate 
that modifications on new H3–H4 affect replication-coupled nucleo-
some assembly in various ways, including the regulation of histone 
protein folding and processing18,27, histone nuclear import44 and the 
interaction between histones and histone chaperones30,45.

Monomethylation of histone H3 lysine 9  
(H3K9me1) is an early mark observed on newly 
synthesized histone H3 in mammalian cells.  

Although molecular insight into the function of this modification 
in nucleosome assembly is still lacking, H3K9me1 may be involved 
in histone processing following histone synthesis and/or the con-
version of new H3K9me1 to trimethylated H3 lysine 9 (H3K9me3),  
a mark on heterochromatin18,46. Supporting the latter idea, muta-
tions in H3K9me1 lysine methyltransferases have been found to affect  
heterochromatin integrity47.

Diacetylation of histone H4 at lysines 5 and 12 (H4K5,12ac),  
catalyzed by Hat1–RbAp46 (refs. 43,48), is detected on newly syn-
thesized histone H4 from yeast and human cells and is likely to be 
an early modification occurring on new H3–H4 (ref. 18). Histone 
H4 mutants harboring mutations at H4K5 and H4K12 are imported 
less efficiently into the nucleus than are wild-type histones49. 
Moreover, Hat1–RbAp46 and H4 K5,12ac regulate the association 

Table 1 Histone chaperones and their functions during nucleosome assembly
Histone chaperone Histone cargo Function during nucleosome assembly Key references

Anti-silencing factor 1 (Asf1) H3–H4 Histone import; histone transfer to CAF-1 and HIRA;  

 regulation of H3K56ac

14,20,30

Chromatin assembly factor 1 (CAF-1) H3.1–H4 H3.1–H4 deposition; (H3–H4)2 formation 8,12,34,116

Death domain–associated protein (Daxx) H3.3–H4
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have shown that Daxx, which forms a complex with the chromatin-
remodeling factor ATRX, is a H3.3 histone chaperone9,10. Although 
it remains to be determined whether Daxx regulates H3.3 occupancy 
at telomeric heterochromatin, it is known that cells lacking ATRX 
exhibit defects in H3.3 occupancy at telomeres and pericentric DNA 
regions10, which suggests that Daxx–ATRX is involved in H3.3 depo-
sition at telomeric regions. In addition to HIRA and Daxx, the human 
homolog of D. melanogaster DEK is probably another H3.3 histone 
chaperone with a role in maintaining heterochromatin integrity, in 
part, through interactions with HP1α (refs. 66,67). Together, these 
studies indicate that H3.3 is deposited at different chromatin regions 
by distinct histone chaperones.

What factors aid in the recruitment of H3.3–histone chaperone 
complexes to different chromatin loci? HIRA binds double-stranded 
DNA and RNA polymerase, which provides a possible mechanism 
whereby HIRA-mediated nucleosome assembly of H3.3 is linked to 
gene transcription68. The Daxx binding partner ATRX binds repetitive 
DNA sequences69, and the ADD domain of ATRX recognizes hallmark  
chromatin signatures of heterochromatin, such as H3K9me3, MeCP2 
and HP1α (ref. 70). Thus, it is possible that ATRX recruits Daxx to 
telomeric heterochromatin for H3.3 deposition. Together, these stud-
ies suggest that HIRA and Daxx are recruited to distinct chromatin 
loci through different mechanisms, to regulate H3.3 occupancy at 
destined chromatin loci.

Is new H3.3–H4 deposited as a dimer or tetramer? It is known 
that during S phase, a small fraction of parental (H3.3–H4)2 tetra-
mers split into two dimers of H3.3–H4 and form mixed nucleosomes 
containing both new and old H3.3–H4; this is in contrast to parental 
H3.1–H4 molecules, which rarely split17. In budding yeast, mixed 
nucleosomes are primarily localized to highly transcribed regions 
or regulatory elements71. Therefore, in contrast to new H3.1–H4 
molecules that are likely to be deposited in a tetrameric form, new 
H3.3–H4 may be deposited in both dimeric and tetrameric forms. 
Two recent independent studies have shown that the histone- 
binding domain (HBD) of Daxx forms a complex with the H3.3–H4 
heterodimer72,73. Remarkably, two H3.3-specific residues, Gly90 
and Ala87 of H3.3, are principal determinants for Daxx’s preferential  
recognition of H3.3 over H3.1. Ala87 is recognized by a shallow hydro-
phobic pocket of Daxx, whereas Gly90 binds to a polar environment 
that discriminates against Met90 of H3.1 (ref. 72). The structure of the 
Daxx HBD–H3.3–H4 complex also reveals that Daxx HBD–H3.3–H4 
competes with DNA for histone binding. In fact, unlike full-length 
Daxx, the Daxx HBD–H3.3–H4 complexes cannot form tetrasomes73, 
which suggests that the observed structure of Daxx HBD–H3.3–H4 
complexes must undergo major conformational changes during the 
assembly of H3.3–H4 into nucleosomes. Future studies are needed 
to determine whether HIRA uses a similar mechanism to recognize 
H3.3–H4 and to elucidate how HIRA and Daxx promote formation 
of H3.3–H4–containing nucleosomes.

Histone  modifications  in  replication-independent  assembly. 
Acetylation marks on newly synthesized histones are important, not 
only for the regulation of replication-coupled nucleosome assem-
bly but also for replication-independent nucleosome assembly. For 
example, in addition to its role in replication-coupled nucleosome 
assembly, H3K56ac promotes histone exchange and turnover in bud-
ding yeast74,75. Rtt109 and Gcn5, two enzymes catalyzing acetylation 
of new H3 (refs. 30,53), have been shown to acetylate histone H3 
lysine 4 (H3K4ac), a mark correlated with transcriptional activation76. 
Thus, acetylation events on new H3 affect both replication-coupled 
and replication-independent nucleosome assembly. Because some 

of these modifications regulate histone–histone chaperone interac-
tions in replication-coupled nucleosome assembly, it is possible that  
similar mechanisms are used to regulate replication-independent 
nucleosome assembly.

In addition to acetylation, other modifications probably affect the 
deposition of H3.3–H4. For example, phosphorylation of histone H4 
serine 47 (H4S47ph), catalyzed by the p21-activated kinase 2 (Pak2), is 
present on histone H4 that co-purifies with Asf1a and Asf1b in mam-
malian cells. H4S47ph promotes nucleosome assembly of H3.3–H4  
and inhibits nucleosome assembly of H3.1–H4 by increasing the bind-
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mediated mainly through Spt16, whereas SSRP1 preferentially binds 
H3–H4 (ref. 86). In budding yeast, the N terminus of Spt16 has been 
shown to bind H3–H4 in vitro87, and Pob3, the SSRP1 homolog, con-
tains tandem PH domains88, a motif also found in the H3–H4 chaper-
one Rtt106 (refs. 35,38,39). Thus, FACT may function as a chaperone 
for both H3–H4 and H2A–H2B.



20	 VOLUME 20 NUMBER 1 JANUARY 2013 nature structural & molecular biology

r e V i e W

Mutations in codanin-1 are associated with congenital dyserythro-
poietic anemia type I (CDAI), a rare disorder. Examination of  
erythrocytes from CDA1 patients revealed defects in heterochromatin 
structure and HP1 localization112. Recently, codanin-1 was found to 
co-purify with Asf1a and Asf1b (refs. 45,113). Codanin-1 binds Asf1 
through the same Asf1 surface as do HIRA and CAF-1, which implies 
competition with HIRA and CAF-1 for Asf1 binding113. Codanin-1 
residues mutated in CDAI patients are far removed from the Asf1 
binding site, yet codanin-1 mutant proteins harboring these muta-
tions exhibited defects in Asf1 binding113. These results suggest that 
CDAI may be caused by alterations in nucleosome assembly and  
highlight the importance of proper regulation of distinct steps of 
nucleosome assembly.

Finally, alterations in histone chaperone expression have been 
documented as potential prognostic markers for different cancers. 
Asf1b, one of the two isoforms of Asf1 in mammalian cells, is required 
for cell proliferation, and higher Asf1b is associated with increased 
metastasis and shorter survival of breast cancer patients114. High 
CAF-1 p60 correlates with adverse outcomes in renal, endometrial 
and cervical cancer115. Because Asf1b and CAF-1 are involved in cell 
proliferation, increased protein abundance of these factors in cancer 
cells could be due to the enhanced proliferation status of cancer cells. 
Alternatively, increased amounts of these chaperones may alter nucleo-
some assembly, resulting in genome instability and the promotion of  
tumorigenesis. Further investigation is needed to determine the extent 
to which the altered abundance of histone chaperones observed in 
human cancer is the consequence or the cause of tumorigenesis.

Concluding	remarks
Great strides have been made in understanding how replication-
 coupled and replication-independent nucleosome assembly path-
ways are regulated by histone chaperones and histone modifications. 
In addition, connections between defects in nucleosome assembly 
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